
1

1

Table of Contents
1 Revised Project Design 3

1.1 Design Evolution 3

1.2 Functional Requirements 3

1.3 Non-Functional Requirements 3

1.4 Engineering Standards 4

1.5 Engineering Constraints 4

1.6 Safety Concerns and Countermeasures 4

2 Implementation 4

3 Testing 8

3.1 Algorithm Training and Results 8

3.2 Application Testing and Results 8

4 Appendices 9

Appendix I: Operation Manual 9

Appendix II: Citations 10

List of Figures

Figure 1 - Home page user-interface 5

Figure 2 - Output page 6

Figure 3 - Grid Visualization page 6

Figure 4 - Login page 7

2

1 Revised Project Design

1.1 DESIGN EVOLUTION

The core components of this project and their functionality over the course of the project's
implementation. We implemented a machine learning algorithm using TensorFlow, a user interface
using ReactJS, a web server using Django, and the entire project has been Dockerized and can be
built using Docker containers. By Client request, bash scripts for building, starting, and stopping
the Docker container were created and implemented. The PostgreSQL database was not used as
much as originally planned but was left in the case that another team continues work on the
project.

1.2 FUNCTIONAL REQUIREMENTS

● Docker Containers
○ We implemented docker containers for ReactJS, PostgreSQL, and Django. We also

created a Docker-Compose file that will build each Docker image for the project. These
Docker containers allow for seamless deployment to the cloud.

● Communications/Web Server
○ The design's web server is implemented using Django. The Django web server handles

HTTP requests from the dashboard and relayed data to and from our machine learning
algorithm.

● Machine-Learning Algorithm
○ Our machine-learning algorithm was implemented using TensorFlow. The algorithm

used a reinforcement learning approach and would take in information about the grid,
such as nodal voltages and the status of VVC devices.

● Frontend Dashboard
○ We created our dashboard around a React skeleton program shared with us by our

advisor. From this, we were able to develop it based on our user interface (UI) skeleton
images from our 491 design document. We created windows for login, algorithm
configuration, and energy grid visualization to house each of the different components
of our project.

1.3 NON-FUNCTIONAL REQUIREMENTS

● Application Portability
○ Through the use of Docker containers, we were able to make our project portable.

Docker is a tool designed to make it easier to deploy and run our application by using
containers. With Docker containers, we are able to wrap our application together with
each library, dependency, etc. that is required to run our program for easy portability
and deployment.

● Communication/Web Server Security
○ Each HTTP request sent through our Django web server was sent securely, protecting

the energy grid information.
● Algorithm Accuracy and Efficiency

○ As with any algorithm, accuracy and efficiency are important and we wanted to ensure
these were satisfied by ours as well, especially due to the importance of the energy grid
in our daily lives.

● Dashboard Usability

3

○ The dashboard was made to be very user-friendly. It had easily identifiable components
that were clearly labeled.

● Visualization Performance
○ Due to a large number of nodes within our simulated grid model, creating and

displaying the visualization of the energy grid was programmed in an efficient way to
maximize its performance.

1.4 ENGINEERING STANDARDS

● IEEE 1250-2018 - IEEE Guide for Identifying and Improving Voltage Quality in Power
Systems

○ Although our project was based on simulations of voltage, we had to ensure that it
conformed to the standard that made sure electrical equipment can withstand
surges, faults, and distortions.

● IEEE 1854-2019 - IEEE Trial-Use Guide for Smart Distribution Applications
○ This standard was used as a guide to determine what type of application our

project was in regards to its functions and how its components are defined.

1.5 ENGINEERING CONSTRAINTS

We faced a couple of engineering constraints when working on implementing our project. The first
of these constraints was that our power grid data was not real-life data taken from actual
Distributed Energy Resources (DERs). Instead, our advisor provided us with simulated data, saved
and imported as a CSV file format. This simulated data was essentially the sole data we used to
train our Machine Learning algorithm. We were able to continue using this simulated data, but this
is a constraint in our minds. This data is not from a real-life power grid; this could prove some
faults if ever tested on a real-life system.

Another engineering constraint that our group had to face was the limited number of time steps to
reduce our state space.

1.6 SAFETY CONCERNS AND COUNTERMEASURES

There were some safety concerns that we had to consider when designing and implementing our
project. One substantial safety concern we dealt with is the current COVID-19 pandemic. We were
all cautious about the virus and always kept this in mind for our semester plans. Because of this, we
were never able to meet in person to work together on things. This was a challenge to adjust to but,
we made use of our time effectively. The main countermeasure we used was coordinating our
weekly meetings using Zoom and Discord platforms. We used these to communicate and
collaborate when designing our project. Overall, our project was very secure and did not require
any activity to place our group members at risk for any harm. Due to the structure of our project,
we used simulated data from power grids and never tested our product in any real-life systems.

2 Implementation
● Django Web Server

The Django web server controlled HTTP requests made from the dashboard, most often
requesting information from the machine learning algorithm. The web server consists of
three main apps. The first handles routing for API calls to the server, storing information
such as other installed apps, or apps that were created for the project, and connection

4

information for the database. The second app is used for authentication. This app handles
logging a user in and out, as well as allowing a user to update their password. The final app
handles requests to the machine learning model. This app will take in the current state of
the VVC devices for our grid, and pass them to the model, it will then return the
algorithm’s output to the dashboard.

● Dashboard/User-Interface

The dashboard for this project was implemented using ReactJS. Each page was
implemented as a React component. The dashboard consisted of four main pages:

● Home page

The home page is the first page a user sees when they log in. The user is presented
with 4 sliders. each slider corresponds to a different control device for the
distribution grid. The first three sliders are for the three voltage regulators on our
grid. The voltage regulators each have eleven different positions that correspond
to an integer between -5 and 5, hence the ranges for the first three sliders are -5 to
5. The fourth slider is for the capacitor bank. The capacitor bank can only be on
or off, so its slider only has options for 0 and 1. These sliders will indicate the
starting positions for each control device in a simulation, so once the user has
selected their desired starting positions, they can press the start button and will be
brought to the ML output page.

Figure 1 - Home page user-interface

● Output page

The output page allows the user to run a twelve-time step simulation. Upon
arriving at the page, the user is able to change their starting state for the grid’s
control devices. If the user previously selected starting positions on the homepage,
those positions will already be reflected, otherwise all starting positions default to

5

zero. The user can then begin a simulation with the simulation button. In a
simulation, the current timestep and device positions will be printed in the middle
column, seen in figure 2. The new device conditions that are received from the
machine learning algorithm will be displayed will be printed in the rightmost
column. The new positions will then be sent back as the input for the next
timestep.

Figure 2 - Output page

● Grid Display Page

The grid display page provides the user with a visual representation of the Power
Distribution Grid. The grid is visualized as a graph using the React-D3-Graph
library. Each node is labeled with its name, and edges can be clicked on to see
connection information. Unfortunately, planned features of this page, such as
voltage information of each node, had to be foregone because of time constraints.

6

Figure 3 - Grid Visualization page

● Login page

The login page is for authentication purposes. A user that does not have valid
authentication credentials will be redirected to this page. Logging in will assign
the user an authentication token. This token allows the user to access all other
pages of the project.

Figure 4 - Login page

● Machine Learning Algorithm

For our machine learning algorithm, we elected to use reinforcement learning. Our agent
was seen as a grid operator, and the environment was the tap positions for each of the
control devices of the grid. Our algorithm used action value statements to determine what
action should be taken. An action, in the case of our algorithm, was changing the position
of each device. A state consisted of the current timestep, the nodal real and reactive
voltages of the distribution grid, and the current positions of the control devices. Each
state had a certain number of possible actions that could be taken from that state. The
number of actions was determined by the number of possible combinations of device
positions. Each voltage regulator has 11 possible positions. The capacitor bank can be on or
off, each of which is considered a ‘position’. This meant that there were 11 * 11 * 11 *2 = 2662
possible actions that could be taken in each state. The action taken was determined by the
reward for that action in the current state. These reward values were stored in a table
called a Q-table. The reward for a given action was calculated by first calculating the power
loss in the distribution grid and multiplying it by a cost coefficient. Then the difference in
device positions was calculated by a sum and also multiplied by a separate cost coefficient.
Each of these values was then summed together to get the value of the reward. Q-table was
filled during training by taking a random action a certain percentage of the time. Once our
algorithm was trained, the reward table was exported as a joblib file, and placed in a
directory where it could be accessed by the Django web server.

● Docker

The Docker container was originally intended to be the last implemented component of the
design. However, early on during implementation, we decided to create docker containers

7

for the design once the basic architecture of the design had been set up. This allowed us to
verify that the changes and new features would not interfere with the deployment of the
project. We used Docker images for React, Django, and PostgreSQL, and then created a
docker-compose that could build each image.

3 Testing

3.1 ALGORITHM TRAINING AND RESULTS

The extent of the testing for our project was on the training and testing of our machine-learning
algorithm. Essentially, we unit tested and manually verified that the results were meeting our
expectations. With the given data that was provided to us, we were able to simulate our Machine
Learning Environment. Using our data, we were able to test and train our Machine Learning
algorithm to ensure that output is what we need. As a result of implementing our algorithm, one
primary issue that we ran into with our algorithm is that it fails to converge. This could be a result
due to not training and testing our algorithm sufficiently. When working on implementing our
algorithm, we were not fully successful in implementing our power loss formula for our core
application. This could also be a result of why our machine learning algorithm failed to converge.

3.2 APPLICATION TESTING AND RESULTS

The testing of our application involved ensuring each individual interface was functioning on its
own. Once this was done, we needed to establish a connection. Ensuring the front-end was
functioning consisted of making sure that each panel was operating in an expected manner. An
example of this was guaranteeing that we could input the correct values in our algorithm
configuration page. Certifying correct back-end functionality involved checking that data was
properly being received and sent. Thus, confirming that our algorithm correctly received the
simulated data from our database and that our algorithm output was being sent back to the
database.

8

4 Appendices

4.1 APPENDIX I: OPERATION MANUAL

In order to run the project locally, this assumes that PostgreSQL is already installed, and is for an
ubuntu system:

1. Clone the git repository

2. Create a local python environment called localPythonEnv using the command
“virtualenv localPythonEnv”

3. Activate the environment using “source localPythonEnv/Scripts/activate”

4. Use “pip install -r requirements.txt” to ensure that Django and its dependencies are
installed

5. Create a PostgreSQL database named ‘predictions’ that is owned by a user with the
following credentials:

username: postgres_user
password: postgres_password

6. Once that has been created, in the backend/django_app directory use the command
“python manage.py migrate” to migrate the database

7. Create a superuser, the name and credentials of this superuser will be stored in the local
database. Use the command “python manage.py createsuperuser”

8. Navigate to the frontend/react_app directory and run “npm install” to install the required
dependencies for the user interface

9. At this point the application can be built by navigating to the main project directory and
using the command “bash aivvo-start.sh” to start the entire project

10. The project can be terminated using the command “bash aivvo-stop.sh”

Using the Application:

1. Once the application is running, navigate to the home page.

2. You can log in by entering the username and password of the superuser that was created
when setting up the application.

3. Upon logging in, you will be taken to the home page. On this page, 4 sliders will be
available. Each slider selects the starting tap position of a different control device, starting
with voltage regulator 1 and ending with the capacitor bank.

4. Each regulator has 11 possible tap positions. The tap positions are each mapped to a
number between -5 and 5, with 0 being the center reference.

5. The capacitor bank has 2 “positions” that correspond to the capacitor bank being on or 0ff,
0 is off, 1 is on.

9

6. Once you have moved the sliders to their desired positions, you can press the start button,
and will then be taken to the ML output page.

7. On this page, you can again change the starting tap position of each device, however, the
sliders should already be set to the positions selected on the home page.

8. Once you are satisfied with the positions, you can select the simulate button.

9. When the simulate button is pressed, the text will start appearing in each of the columns to
the right of the sliders; the middle column will display the tap positions input into the
machine learning algorithm, the positions will be displayed from left to right in the
following order: regulator 1, regulator 2, regulator 3, capacitor bank.

10. In total, the simulation should run for 12-time steps, with each time step being one hour.
When the simulation has finished, you can readjust the sliders, and run another simulation
without needing to return to the home page.

11. A visualization of the power distribution grid can be seen by selecting “Grid” in the
navigation bar at the top of the screen.

12. Upon arriving at the page, you will need to initialize the map by pressing the “Initialize
Grid” button. When pressed the grid should automatically appear.

13. The name of a node can be seen by clicking on it.

14. Clicking on a bus will display which nodes that section of the bus is connected to.

15. Once you have finished using the application, you can log out by selecting “Log Out” in the
top right corner of the screen.

4.2 APPENDIX II: CITATIONS

"IEEE Guide for Identifying and Improving Voltage Quality in Power Systems," in IEEE Std 1250-2018
(Revision of IEEE Std 1250-2011) , vol., no., pp.1-0, 16 Nov. 2018, doi:
10.1109/IEEESTD.2018.8532376.

"IEEE Trial-Use Guide for Smart Distribution Applications," in IEEE Std 1854-2019 , vol., no., pp.1-65,
30 Aug. 2019, doi: 10.1109/IEEESTD.2019.8820199.

10

